Activation of muscarinic cholinergic receptors on human SH-SY5Y neuroblastoma cells enhances both the influx and efflux of K+ under conditions of hypo-osmolarity.
نویسندگان
چکیده
The ability of receptor activation to regulate osmosensitive K+ fluxes (monitored as 86Rb+) in SH-SY5Y neuroblastoma has been examined. Incubation of SH-SY5Y cells in buffers rendered increasingly hypotonic by a reduction in NaCl concentration resulted in an enhanced basal efflux of Rb+ (threshold of release, 200 mOsM) but had no effect on Rb(+) influx. Addition of the muscarinic cholinergic agonist, oxotremorine-M (Oxo-M), potently enhanced Rb+ efflux (EC50 = 0.45 microM) and increased the threshold of release to 280 mOsM. Oxo-M elicited a similarly potent, but osmolarity-independent, enhancement of Rb+ influx (EC50 = 1.35 microM). However, when incubated under hypotonic conditions in which osmolarity was varied by the addition of sucrose to a fixed concentration of NaCl, basal- and Oxo-M-stimulated Rb+ influx and efflux were demonstrated to be dependent upon osmolarity. Basal- and Oxo-M-stimulated Rb+ influx (but not Rb+ efflux) were inhibited by inclusion of ouabain or furosemide. Both Rb+ influx and efflux were inhibited by removal of intracellular Ca2+ and inhibition of protein kinase C activity. In addition to Oxo-M, agonists acting at other cell surface receptors previously implicated in organic osmolyte release enhanced both Rb+ efflux and influx under hypotonic conditions. Oxo-M had no effect on cellular K+ concentration in SH-SY5Y cells under physiologically relevant reductions in osmolarity (0-15%) unless K+ influx was blocked. Thus, although receptor activation enhances the osmosensitive efflux of K+, it also stimulates K+ influx, and the latter permits retention of K+ by the cells.
منابع مشابه
Activation of muscarinic cholinergic receptors enhances the volume-sensitive efflux of myo-inositol from SH-SY5Y neuroblastoma cells.
A mechanism used by cells to regulate their volume under hypo-osmotic conditions is the release of organic osmolytes, one of which is myo-inositol. The possibility that activation of phospholipase-C-linked receptors can regulate this process has been examined for SH-SY5Y neuroblastoma cells. Incubation of cells with hypo-osmolar buffers (160-250 mOsm) led to a biphasic release of inositol which...
متن کاملReceptor regulation of the volume-sensitive efflux of taurine and iodide from human SH-SY5Y neuroblastoma cells: differential requirements for Ca(2+) and protein kinase C.
The basal (swelling-induced) and receptor-stimulated effluxes of (125)I(-) and taurine have been monitored to determine whether these two osmolytes are released from human SH-SY5Y cells under hypotonic conditions via common or distinct mechanisms. Under basal conditions, both (125)I(-) (used as a tracer for Cl(-)) and taurine were released from the cells in a volume-dependent manner. The additi...
متن کاملMuscarinic receptor sequestration in SH-SY5Y neuroblastoma cells is inhibited when clathrin distribution is perturbed.
The possibility that clathrin plays a role in the agonist-mediated sequestration of muscarinic cholinergic receptors in human SH-SY5Y neuroblastoma cells has been investigated by the application of experimental paradigms previously established to perturb clathrin distribution and receptor cycling events. Preincubation of SH-SY5Y cells under hypertonic conditions resulted in a pronounced inhibit...
متن کاملCholesterol regulates volume-sensitive osmolyte efflux from human SH-SY5Y neuroblastoma cells following receptor activation.
The ability of cholesterol to modulate receptor-mediated increases in the volume-dependent release of the organic osmolyte, taurine, has been examined. Depletion of cholesterol from SH-SY5Y neuroblastoma by preincubation of the cells with 5 mM methyl-beta-cyclodextrin (CD) for 10 min resulted in a 40 to 50% reduction in cholesterol and an enhancement of the ability of proteinase-activated recep...
متن کاملRegulation of [Ca++]i in human neuroblastoma (SH-SY5Y) cells expressing recombinant rat angiotensin1A receptors by angiotensin II and carbachol.
The ability of angiotensin II (AII) to regulate [Ca++]i in human neuroblastoma (SH-SY5Y) cells stably expressing recombinant rat AT1A receptors was investigated using microfluorimetric methods, and compared to responses obtained by stimulation of native muscarinic receptors. Applications of AII or carbachol produced biphasic rises of [Ca++]i, but in Ca++-free solutions (containing 1 mM ethylene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 325 2 شماره
صفحات -
تاریخ انتشار 2008